SWOT INSTITUTE
 3-DIMENSIONAL GEOMETRY
 XII-TEST

Time : 1 hr .

1. Find the direction cosines of a line which makes equal angles with the coordinate axes.
2. Find the shortest distance between the lines

$$
\begin{aligned}
& \vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and } \\
& \vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
\end{aligned}
$$

3. Find the angle between the lines whose vector equations are

$$
\begin{aligned}
& \vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \text { and } \\
& \vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})
\end{aligned}
$$

4. Find the shortest distance between the linens whose vector equations are

$$
\begin{aligned}
& \vec{r}=(i-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k} \text { and } \\
& \vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}
\end{aligned}
$$

5. Find the values of p so that the lines $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.
6. Find the equation of the linen in vector and in Cartesian form that passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$.
7. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$.
8. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$.
9. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

$$
2 x+3 y+4 z-12=0
$$

10. Find the equation of the plane that contains the point $(1,-1,2)$ and is perpendicular to each of the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$.
11. Find the coordinate of the point where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the XY-plane.
12. Find the vector equation of the line passing through $(1,2,3)$ and parallel to the planes $\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$.
